250 research outputs found

    Shear effects in lateral piezoresponse force microscopy at 180∘^\circ ferroelectric domain walls

    Full text link
    In studies using piezoresponse force microscopy, we observe a non-zero lateral piezoresponse at 180∘^\circ domain walls in out-of-plane polarized, c-axis-oriented tetragonal ferroelectric Pb(Zr0.2_{0.2}Ti0.8_{0.8})O3_3 epitaxial thin films. We attribute these observations to a shear strain effect linked to the sign change of the d33d_{33} piezoelectric coefficient through the domain wall, in agreement with theoretical predictions. We show that in monoclinically distorted tetragonal BiFeO3_3 films, this effect is superimposed on the lateral piezoresponse due to actual in-plane polarization, and has to be taken into account in order to correctly interpret the ferroelectric domain configuration.Comment: 4 pages, 3 figure

    Growth of Single Unit-Cell Superconducting La2−x_{2-x}Srx_xCuO4_{4} Films

    Full text link
    We have developed an approach to grow high quality ultrathin films of La2−x_{2-x}Srx_xCuO4_{4} with molecular beam epitaxy, by adding a homoepitaxial buffer layer in order to minimize the degradation of the film structure at the interface. The advantage of this method is to enable a further reduction of the minimal thickness of a superconducting La1.9_{1.9}Sr0.1_{0.1}CuO4_{4} film. The main result of our work is that a single unit cell (only two copper oxide planes) grown on a SrLaAlO4_4 substrate exhibits a superconducting transition at 12.5 K (zero resistance) and an in-plane magnetic penetration depth λab(0)\lambda_{ab}(0) = 535 nm.Comment: to be published in "Solid State Electonics" special issue, conference proceedings of the 9th Workshop on Oxide Electronics, St-Pete Beach, FL, 20-23 november 2002 : 12 pages 4 figures in preprint versio

    Giant Oscillating Thermopower at Oxide Interfaces

    Get PDF
    Understanding the nature of charge carriers at the LaAlO3/SrTiO3 interface is one of the major open issues in the full comprehension of the charge confinement phenomenon in oxide heterostructures. Here, we investigate thermopower to study the electronic structure in LaAlO3/SrTiO3 at low temperature as a function of gate field. In particular, under large negative gate voltage, corresponding to the strongly depleted charge density regime, thermopower displays record-high negative values of the order of 10^4 - 10^5 microV/K, oscillating at regular intervals as a function of the gate voltage. The huge thermopower magnitude can be attributed to the phonon-drag contribution, while the oscillations map the progressive depletion and the Fermi level descent across a dense array of localized states lying at the bottom of the Ti 3d conduction band. This study is the first direct evidence of a localized Anderson tail in the two-dimensional (2D) electron liquid at the LaAlO3/SrTiO3 interface.Comment: Main text: 28 pages and 3 figures; Supplementary information: 29 pages, 5 figures and 1 tabl

    Diodes with Breakdown Voltages Enhanced by the Metal-Insulator Transition of LaAlO3_3-SrTiO3_3 Interfaces

    Full text link
    Using the metal-insulator transition that takes place as a function of carrier density at the LaAlO3_3-SrTiO3_3 interface, oxide diodes have been fabricated with room-temperature breakdown voltages of up to 200 V. With applied voltage, the capacitance of the diodes changes by a factor of 150. The diodes are robust and operate at temperatures up to 270 C
    • …
    corecore